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Abstract: 

The change of the Earth’s surface resulting from human activities, such as land 

reclamation has been studied for past decades. Particularly, research on land use and land 

cover (LULC) transformation is of great significance for exploring and understanding 

local and even regional land-use changes, which can serve as a scientific foundation for 

land use, town planning, and urban redevelopment. This study thus provides a systematic 

review on LULC change detection technology and applications for assisting the 

development based on the Hong Kong Smart City initiative and facilitating the 

implementation of the Common Spatial Data Infrastructure in Hong Kong.  
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Systematic review on the change detection of land use and land cover 

over urbanized areas using remote sensing images 

1. Introduction 

With the global urbanization and economic development during the last three 

decades, the earth’s surface has experienced increasingly rapid and comprehensive 

changes, including changes in land use and land cover. Land use is referred to the land 

that people use it for, while land cover is referred to the features on the earth’s surface 

(Mishra et al., 2017). This information is critical for natural resource management, 

ecosystem and biodiversity conservation, and decision support for sustainable 

development. Quantifying changes in Land Use and Land Cover (LULC) has significant 

consequences for planning, surveying, transportation, and the economy since urban areas  

are the centers of human activity (Chi Zhang et al., 2019). Singh stated that “change 

detection is the technique of identifying differences in an object’s or phenomenon’s status 

across time by monitoring it at various times” (Singh, 1989).  

Remote sensing (RS) is a technique that acquires, extract, and analyze information 

about objects or phenomenon without physical connection (Campbell et al., 2011). It 

starts with a photograph of Paris from a balloon in 1958 (Rogan et al., 2004). Then the 

systematic development is carried by World War I and the climax development is 

reached during the Cold War (Wong et al., 2021). Its recent development is with the 

increase of small sensor pods (Campbell et al., 2011). Simultaneously, with the 

development of science and technology, the quality of data captured by RS is improved 

significantly, becoming an increased power and effective tool facilitating the synoptic 

analysis of pattern and dynamic changes of LULC at local, regional, and global scales 

over time and heightening awareness of the critical nature of assessing LULC changes for 

comprehending and interaction between individuals and the environment (Dewan et al., 

2009; Onur et al., 2009; Reid et al., 2000). Particularly, retrospective and consistent 

synoptic coverage of satellite photographs provide depth insight into the area that has 

high-speed changes (Dewan et al., 2009).  

RS data usually is in the form of multi- or hyper-resolution images. These RS 

images have been widely used in change detection since they span a broad geographic 



area and are available in a wide variety of spatial, spectral, and temporal resolutions (Ban 

et al., 2016a). For example, X. Chen et al. (2005) used Landsat 4 and Landsat 7 images to 

analyze the landscape change of Siberian city between 1990, 2000, and 2001. Wang et al. 

(2022) evaluated the land use cover changes of Nanjing, Xianning, and Zhejiang in 2016, 

2017, 2019, and 2021 using SPOT 7, Sentinel-2, and Landsat 8 images. In addition, some 

change detection techniques use remote sensing images with a combination of 

Geographic Information System (GIS) technique which can incorporate multisource 

datasets for change detection (Alqurashi et al., 2013). RS and GIS datasets were 

integrated by Brondizio et al. (1994) to assess the patterns of land use changes in the 

Amazon forest based on Landsat TM scenes from 1985 to 1991. This combined 

technique is also extensively applied in a variety of sectors, including the studies of 

urbanization (Ban et al., 2012; Taubenböck et al., 2012), deforestation (Achard et al., 

2002; Desclée et al., 2006), desertification (Dawelbait et al., 2012; Yang et al., 2005), 

flooding, disaster monitoring (Martinez et al., 2007; Martinis et al., 2011), and glacier 

monitoring (Akbari et al., 2014).  

A variety of change detection approaches and algorithms have been proposed and 

evaluated. These methods have been designed to target different components of the 

change detection process, which usually include speckle reduction in the context of 

change detection (O. Yousif et al., 2013), extraction of detailed ‘from-to’ change 

information using pre- and post-classification comparison (Alphan et al., 2009), spatial-

contextual change detection (Osama Yousif et al., 2014), unsupervised change detection 

(Francesca Bovolo et al., 2006), feature-based and pixel-based change detection (Gamba 

et al., 2006), and object-based change detection (Bontemps et al., 2008; Desclée et al., 

2006; Qin et al., 2013; Osama Yousif et al., 2015). However, the detection of changes 

using multitemporal remotely sensed images is complicated considering the uncertainties 

in the measured phenomenon, limitations in the imaging sensors’ ability to measure 

ground changes, inherent noise in the imaging process, and uncertainties in the change 

detection process, as well as factors like phenology, soil moisture, and sun and 

satellite/platform viewing angles. There is no single solution that is capable of resolving 

all forms of change detection challenges. Different applications require different 

approaches, and very high resolution remote sensing images with enhanced spatial, 



spectral, radiometric, and temporal resolution can be used to facilitate the new Smart City 

initiatives. 

The project/review paper is aiming to review recent improvements in change 

detection approaches by employing multi-temporal remote sensing images. Specifically, 

a series of change detection techniques, including processing, algorithms, and accuracy 

assessment will be discussed. The pixel-based and object-based change detection will be 

elaborated. The primary change detection workflow is illustrated as follows in. 

 

 

Figure 1. The primary LULC change detection workflow. 

 

2. A review of land cover land use change detection methodologies 

2.1. Pixel-based change detection 

A pixel is a fundamental unit for image analyses and change detection approaches. For 

pixel-based change detection algorithms, a pixel of a digital image is the smallest unit 

whose spectral features will be used to identify and analyze changes without considering 

the environmental scope. RS images are used for change detection since any changes in 

LULC should be reflected by the differences in radiance/reflectance values. When 

compared to those produced by other variables, radiance/reflectance changes induced by 

LULC should be significant (Ingram et al., 1981). These determinants include variations 

in atmospheric conditions, changes in solar radiation, and variations in soil moisture 



(Jensen, 1983). By incorporating with relevant ancillary data, the effects of the mentioned 

variables can be minimized.  

 

2.1.1. Change detection by comparing bitemporal data 

Change detection can be carried out by directly comparing data of two different dates in a 

pixel-by-pixel, thus, to highlight the changed areas. Numerous methods of this category 

mainly can be classified in terms of two aspects, i.e., the comparison strategy performed, 

and the data used for comparison. The algebraic operator of differencing and ratioing are 

two common strategies for comparison. The data used for comparison could be the 

original bands of reflectance, composited indices from original bands (e.g., the 

normalized difference vegetation index), and transformed features (e.g., principal 

components) from original bands. A schematic diagram of this category is displayed in 

Figure 2. 

 

Figure 2. schematic diagram of change detection by comparing bitemporal data  

 

2.1.1.1. Image differencing 

The most extensively used approach for change detection is image differencing, which 

has been utilized in a number of geographical regions. This method assumes that a 

change in land use will generally lead to a change in land cover and a change in spectral 

radiances or reflectance of that land unit consequently(Quarmby et al., 1989). 

It is a simple and straightforward method for detecting and interpreting changes 

(Weismiller et al., 1977). It categorizes image pixels as either changed or remain 

unchanged. These results are achieved by subtracting the digital number assigned to a 

pixel in the image taken at one time-stamp and extracting from that assigned pixel to the 

analogous pixel in the image taken at another time-stamp (Singh, 1989). A differencing 

image can be generated from two spatially registered images of time 𝒕𝟏 and 𝒕𝟐 in a pixel-

to-pixel manner, which is formulated as: 



𝑫𝒙𝒊𝒋
𝒌 = 𝒙𝒊𝒋

𝒌 (𝒕𝟐) − 𝒙𝒊𝒋
𝒌 (𝒕𝟏) + 𝑪 

where 𝒙𝒊𝒋
𝒌  is the pixel at row i, column j in the band k and C is a constant to produce 

positive digital numbers. The image differencing can be applied on original bands of 

image reflectance and it has also been used for differencing of mainly relevant vegetation 

indices constructed from multiple bands, such as the ratio vegetation index, normalized 

difference vegetation index, transformed vegetation index (Singh, 1989). Such change 

detection specifically on vegetation provide an avenue for deciding whether or not a 

vegetation canopy has been significantly altered (Nelson, 1983). 

2.1.1.2. Image ratioing 

Ratioing is thought to be a reasonably quick technique of detecting areas of change. 

Two registered images from different dates with one or more bands are ratioed 

correspondingly in a pixel-by-pixel basis, formulated as: 

𝑹𝒙𝒊𝒋
𝒌 =

𝒙𝒊𝒋
𝒌 (𝒕𝟏)

𝒙𝒊𝒋
𝒌 (𝒕𝟐)

 

The ratio of the pixel should be near or close to 1 if negligible changes occur and can 

deviate largely from 1 if considerable changes occur due to the change of the reflected 

energy. The ratio of two registered images from different dates containing one or more 

bands is computed band by band (Singh, 1989). It is used to emphasize tiny differences in 

the pixels of diverse land covers and can reduce the effect of shadows, radiation variation, 

image noise, and solar angle (Alphan, 2011a). 

2.1.1.3. Feature transformation 

Feature transformation can be performed in advance of comparison. It is a multivariate 

technique for lowering dataset dimensionality, which is used in remote sensing 

transformation (Singh et al., 1985). Principal Component Analysis (PCA) is a strategy for 

minimizing the quantity of spectrum and maximizing the variance of the major 

components (Singh, 1989). In multitemporal studies, for an example, the PCA method 

catenate the four-band Landsat scenes of the same area which are recorded at different 

dates, and such catenated bands can be treated as a single multiple-band data set, on 

which PCA analysis can be performed. This major component images generated should 

reveal the gross differences related with overall radiation and atmospheric changes and 

the minor components are associated with local changes in land cover (Richards, 1984). 



It was claimed that incorporating standardized variables in the PCA improved the signal-

to-noise ratio and image enhancement significantly (Singh et al., 1985). Besides, the 

tasseled cap transformation (TCT) has been widely and mainly used for vegetation 

change detection (Jin et al., 2005). The TCT is originally designed for the Landsat 

satellite by applying a linear transformation on its spectral bands to extract the physical 

indicators of brightness, greenness and wetness (Jin et al., 2005). The linear coefficients 

used for TCT is sensor specific and should be determined case by case. 

Two critical components of the differencing, ratioing and feature transformation 

methods are the image registration and threshold selection. Robustness and strict image 

registration should be performed to avoid the pseudo-change caused by misregistration. 

To visualize the changes between images, it is critical to choose an appropriate ratioing 

threshold value. The choice of threshold is normally arbitrary in a trail-and-error process 

to achieve an optimal one. Rogerson (2002) offered a statistical framework for the 

selection of thresholds with special attention to global autocorrelation. From a 

visualization perspective, the methods for change detection by comparing bi-temporal 

data are mainly used to highlight changed areas effectively. Examples has been given in 

Figure 3 in which changed areas are highlighted with various combinations of bands 

constructed by differencing, ratioing and principal component. With the appropriate 

determined threshold, the image can be divided into binary change, i.e., changed or no-

changed.  

 



 

Figure 3. Spatial representation of changes as RGB composites of binary change images 

(cited from Alphan (2011b)) 

 

2.1.2. Change detection by stacking multi-date data 

In addition to detect changes by comparing the data in two different dates, change 

detection can also be carried out by stacking or fusing data set spanning a certain period 

of time to directly identify the changed areas. A schematic diagram illustrating the 

category method is shown in Figure 4. For instance, the four visible to near-infrared 

bands of Landsat at two dates can be stacked to form an eight-band composited data and 

the analysis. Subsequent feature analysis and/or classification are applied on the 

composited data. The feature analysis can also be the PCA as that introduced in Section 

2.1.1.3. Both supervised and unsupervised modes can be employed for classification. In 

the supervised mode, training sets (changed or unchanged areas) are utilized to identify 

the input space of the classifier in a supervised approach. In unsupervised mode, cluster 

analysis is used to classify scenes that have undergone known modifications (Singh, 

1989). 

 



 

Figure 4. schematic diagram of change detection by stacking multi-date data 

 

Although this approach only requires a single classification, it is a sophisticated method 

with numerous classes and features (temporal and spectral), among which redundancy 

can appear (Estes et al., 1982). Such redundancy problem can be partly overcome by 

adopting a PCA transformation on the original data set and major variance can be 

represented in the first few components that will be used in the subsequent classification 

procedure. Another challenge is that the temporal and spectral variables in the combined 

dataset have equal status (Schowengerdt, 2012), making it difficult to distinguish whether 

the changes are spectral or temporal in the classification result. Swain (1978) proposed a 

Bayesian classifier to partly eliminate this coupling effect 

 

2.1.3. Change detection by post-classification  

Post-classification comparison is an effective approach for change detection, which 

needs the comparison of separately categorized images. By properly coding the 

categorization outcomes of two different dates, the entire matrix of changes can be 

depicted. Additionally, due to the selective grouping of categorization results, any 

changing subgroup may be relevant. Figure 5 displays the schematic diagram of this 

category of methods. 

 

 

Figure 5. schematic diagram of change detection by post-classification 



Post-classification comparisons are useful since they allow the separation of data from 

two dates, alleviating the issue of adjusting for atmospheric and sensor changes across 

dates (DA Stow et al., 1980). The solution also overcomes the issue of accurate 

registration of multiple-date images (Singh, 1989). However, an early study reveals 

significant mistakes in LULC change detection with Landsat images via post-

classification method (Gordon, 1980) which was later evidenced by (Toll et al., 1981) 

that the low performance may be ascribed partly to the difficulty of obtaining similar 

classification results from images taken at different times. Individual image classification 

errors could be transmitted in the resulting map, leading to lower change detection 

accuracy (Lillesand et al., 2015). Individual image classification must be as precise as 

possible in order to optimize change detection outcomes. 

 

2.2. Object-based change detection 

While the abovementioned pixel-based approaches for change detection are conducted 

at a pixel-by-pixel, the object-based approaches are performed on object level. The term 

object is defined as a group of pixels with homogeneous spectral characteristics and 

continuous spatial distribution (Benz et al., 2004). A critical procedure in object-based 

change detection is to extract objects from images through segmentation strategies. Image 

segmentation algorithms separate an image into meaningful homogenous parts depending 

on a variety of factors including spectral characteristics, shape, texture, and size. Image 

objects delineated by segmentation are subsequently classified and generalized to define 

object classifications (Hay et al., 2008).  

In essential, the difference between pixel and object representations of an image lies in 

the used unit, which indicates that most pixel-based techniques in change detection can 

be transferred to the object-based analysis (Ban et al., 2016b). For example, the algebraic 

operators including differencing and ratioing used in pixel-based can be performed on 

object-based change detection as well. The only difference is that instead of using pixels 

intensity, objects’ average intensity should be used as a feature for image analysis tasks. 

Both supervised and unsupervised mode can be applied as well. In supervised 

classification, the class identity is built on analyst-selected pixel or segment samples 

representing training data classes. Unsupervised classification classifiers can adopt 



parametric or non-parametric statistical assumptions, hard or soft statistical principles, 

minimal distance to means or maximum likelihood, and so on. Analysts assign class 

labels when pixels or segments have been sorted according to cluster types.  

It is worth noting that object-based techniques are generally applied on processing 

very-high spatial resolution (VHR) images, for which the features of objects are normally 

larger than the pixel of the ground resolution (Strahler et al., 1986). As their name 

indicated, this type of images has very high spatial resolution, such as up to less than one 

meter, thus they can capture very detailed spatial structure and texture information of the 

land surface. Nevertheless, change detection with VHR images severely suffer from the 

spectral difference of intraclass pixels, thus resulting in considerable ‘pepper and salt’ 

noises in the change detection map. The object-based approaches can largely overcome 

this problem and it can also increase computation efficiency due to the processing of 

objects rather than the pixels. Moreover, image co-registration errors were found to be 

less sensitive to object-based change detection (Ban et al., 2016a). When changes of the 

Earth’s surface emerge as distinct objects, the object-based techniques also consider the 

spatial features rather than merely its spectral, radiometric, and temporal properties 

(Douglas Stow, 2010). Numerous studies have demonstrated that utilizing spatial 

contexture information can greatly improve the change detection performance with VHR 

images (X. Zhang et al., 2017; Zhu et al., 2017). 

Corresponding to the classification of pixel-based techniques, the object-based 

techniques can be classified to three categories as well, i.e., change detection by 

comparing bitemporal objects, by stacking multi-date data, and by post-classification. 

 

2.2.1. Change detection by comparing bitemporal objects 

Change detection by comparing bi-temporal data is similar to pixel-based techniques 

that compare objects from different dates (Miller et al., 2005). The spectral, spatial, or 

extracted features of the objects are used for comparison, and displayed the schematic 

diagram of this category of methods. Object integration with GIS is easy to be 

implemented with this category of method. Due to the lack of “from-to” change, it makes 

for searching for spatially related items in multi-temporal images be challenging. Figure 

6 displays the schematic diagram of this category of methods. 



 

 

Figure 6. Change detection by comparing bitemporal objects 

 

2.2.2. Change detection by stacking multi-date data 

Desclée et al. (Desclée et al., 2006) directly apply image segmentation and 

classification to stack and composite multi-temporal images. To construct the composite 

image, co-registered panchromatic, multi-spectral wavebands, or spectrogram were 

transformed to multi-temporal images. To identify changed objects, a statistical approach 

is applied. The modified objects are related to the abnormal levels of reflectance 

difference statistics. A single segmentation produces images of objects that are constantly 

in scale, geometry, and position between dates. Multitemporal segmentation will cause 

various abnormalities if there are misregistration and shadowing differences across days 

(Douglas Stow, 2010). A disadvantage of using single segmentation is that it will not 

offer new items that may appear at different dates due to any changes. Figure 7 displays 

the schematic diagram of this category of methods. 

 

 

Figure 7. Change detection by stacking multi-date data 

 

2.2.3. Change detection by post-classification  

Classified object change detection is an extensively used object-based method for 

generating a change matrix identifying ‘from-to’ changes (Hall et al., 2003). On multi-

temporal pictures, the classified object change detection is used to extract and classify 

objects individually. The grouped items are compared for precise change analysis. This 

technique was widely used to update object change when given historical maps or GIS 

data (Hansen et al., 2012; Holland et al., 2008; Xian et al., 2010). The accuracy of the 



classification algorithm is directly related with its applications. Figure 8 displays the 

schematic diagram of this category of methods. 

 

Figure 8. Change detection by post-classification 

 

2.3. Machine learning techniques 

Due to the rapid development of computer technology, the machine learning 

techniques have been increasingly integrated into the research of traditional change 

detection methods. Essentially, the machine learning can be performed in both pixel and 

object level. While traditional machine learning, or shadow learning methods are more 

focused on pixel level, the development of deep learning accelerates object-level vision 

research.  

 

2.3.1. Change detection with traditional machine learning  

Widely used machine learning models include Artificial Neural Network (ANN) ((X. 

Liu et al., 2002; Pijanowski et al., 2005; Woodcock et al., 2001), Support Vector 

Machine (SVM) (Huang et al., 2008; Nemmour et al., 2006b). Machine learning aims to 

generate a precise change information matrix and eliminate the external influence of 

environmental and atmospheric changes between multi-temporal images datasets. 

However, choosing a high resolution and adequate training sample imaging dataset for 

classification, especially for historical imagery dataset classification, might be difficult. 

When remote sensing training samples of very-high resolutions are not available, it is 

time-consuming and hard to obtain high-precision classification results, leading to poor 

change detection outcomes. 

ANN algorithms do not make any assumptions about data distribution or 

independence. It flexibly estimates continuous functions from data without indicating 

how the outcome are related to inputs mathematically (Im et al., 2005). The trained 

network is then used to construct a change map using the main dataset. When there is an 



irregular distribution of land cover types, ANN technology can offer better results. (Lu et 

al., 2004). In comparison, SVM, a non-parametric and supervised statistical learning 

method, is a classification algorithm making no assumptions about the distribution of 

data and minimizing the structural risk (Vapnik, 2000). Changed and unchanged pixels 

are treated as binary classification problems when stacked multi-temporal images (Huang 

et al., 2008). The suitable threshold values generated from the training dataset may 

distinguish changes and no-change using spectral properties (F. Bovolo et al., 2008). 

Figure 9 depicts the general workflow of traditional machine learning used for change 

detection. An example is given in Figure 10 illustrating a binary change detection with 

SVM and ANN. 

 

 

Figure 9. Architecture of machine learning change detector (modified from Nemmour et 

al. (2006a)) 



 

Figure 10. Change maps obtained for the SVM with (a) Polynomial kernel. (b) RBFE 

kernel, (c) RBFSA kernel and (d) RBFSID kernel and (e) ANN (cited from Nemmour et 

al. (2006a)) 

 

2.3.2. Change detection with deep learning 

In recent years, numerous deep learning frameworks for change detection have been 

developed, such as the convolutional neural network (CNN) (Kemker et al., 2018), 

recurrent neural network (RNN) (H. Chen et al., 2020), deep belief network (DBN) (Cao 

et al., 2017), and generative adversarial network (GAN) (Zhao et al., 2020). Instead of 

segmented the images into objects, such deep learning algorithms divides the image pairs 

into regular blocks to account for contextual information. It is worth noting that both 

differencing and stacking strategy can be applied on the deep learning framework as well 

and examples are given in Figure 11 and Figure 12, respectively. 



 

Figure 11. Structure of image stacking for convolutional neural network for change 

detection (cited from Chenxiao Zhang et al. (2020)) 

 

Figure 12. Structure of the difference discrimination network for change detection (cited 

from Chenxiao Zhang et al. (2020)) 

In the early stage, small image patches were input into the classification networks to 

obtain the corresponding categories (P. Chen et al., 2022). Fully convolutional change 

detection networks applied on entire image have increasingly become the preferred 

architecture mainly due to the increasing computation ability. The deep learning approach 

is more robust and has a better generalization ability. As deep learning approaches are 

normally training with labelling dataset, it thus can learn the “changed” and “unchanged” 

models directly from the training samples and avoid generating the intermediate images 



of change magnitude. Nevertheless, there are two major limitations of this approach. 

Firstly, the regular shape which is maintained and can partly influence the change 

detection results. This problem has been addressed by scaling or rotating the direction of 

training sample and introducing multi-scale convolutional kernel (Zhou et al., 2021). 

Secondly, a network can achieve relatively high accuracy when provided with sufficient 

trained samples; however, the labelling of training samples can be time consuming and 

labour intensive. Transfer models has been implemented as a solution for this problem, 

which train the initial model on datasets of open source and then refine the model with 

limited number of real data (J. Liu et al., 2020). Some frequently used open-source 

datasets constructed for training task of image classification has been given in Shi et al. 

(2020). An example of change detection with transfer-based deep learning method along 

with two unsupervised methods of S3VM-based and GAN based is given in Figure 13. 

 

Figure 13. Comparison of change detection with (a) GAN-based, and (b) transfer-based 

deep learning methods (cited from J. Liu et al. (2020)). 

3. A review of DEM change detection using synthetic aperture radar (SAR) 

The cloudy and rainy monsoon weather makes land change detection from optical 

remote sensing extremely challenging in Hong Kong. The Synthetic Aperture Radar 

(SAR) provides an all-day all-weather operating system, which can penetrate clouds and 

receive microwave reflectance from the Earth, day and night (Curlander and McDonough, 

1991). To overcome the inherent deficiencies of optical systems, SAR images have been 

used to improve land change detection using images intensities and textures (Gong et al., 

2014), the interferometric coherence (Liao et al., 2008), and the combination of SAR and 

optic sensors (Camps-Valls, et al., 2008). Nowadays with the advancement in both spatial 



(up to 1 m) and temporal (within week) resolutions, the involvement of SAR images have 

significantly contributed to the feasibility and accuracy of retrieving land use land cover 

(LULC) products from satellite remote sensing techniques. In particular, the coherence 

map derived from interferometric SAR (InSAR) (Bamler and Hartl, 1998) reveals minor 

and sensitive ground change information, from which the spatiotemporal coherence 

behavior can be analyzed to identify and retrieve different ground features (Jiang et al., 

2017). However, both the intensity (amplitude) and coherence can only reflect shape-

related ground changes. Taking advantages of the precise repeat track design of SAR 

satellites, InSAR become one of the few remote sensing tools that can reflect geometry 

information, e.g., detecting spatially detailed ground topography (elevation) and 

deformation (Bürgmann et al., 2000). Regardless the noise effects, the interferometric 

phase of two SAR images contains the phase components contributed from the ground 

topography and ground deformation (Bamler and Hartl, 1998). The topography phase can 

be converted to the ground elevation, i.e., generating a Digital Elevation Model (DEM), 

based on the geometry between SAR satellite and the earth (Crosetto, 2002).  

Launched in February 2000, the Shuttle Radar Topography Mission (SRTM) by 

NASA generated the first near-global scale DEM (56°S to 60°N) product via single-

pass interferometry (Farr et al., 2007). In 2009, another representative InSAR-based 

global DEM was released jointly by NASA and Japan’s Ministry of Economy, Trade and 

Industry (METI), i.e., ASTER GDEM V1 (Reuter et al., 2009), with its subsequent 

version ups of ASTER GDEM V2 and ASTER GDEM V3 released in 2011 and 2019, 

respectively. Compared to the conventional 2D change detection, these InSAR derived 

3D data provides volumetric dynamics to facilitate more change detection applications 

with better accuracy. Therefore, it is possible that ground changes can be featured by 

InSAR derived DEMs, via tracking the topography changes. Earlier studies have used 

InSAR DEMs to estimate large scale glacier elevation changes (Muskett et al., 2003), 3D 

glacier motion map (Gudmundsson et al., 2002), landslides identification (Huang et al., 

2015), volumetric change during volcano eruption (Kubanek et al., 2015), etc. In recent 

years, the German Aerospace Center (DLR) launched the X-band TanDEM-X mission 

and has acquired data for the generation of two versions of high-resolution global digital 

elevation models, i.e., TanDEM-X DEM (Rizzoli, et al., 2017) and TanDEM-X Change 



DEM (Lachaise et al., 2020). The TanDEM-X Change DEM product has covered 

majority of the land areas (Figure 14), which enables the retrieval of even small terrain 

changes on global scales with unprecedented resolution (Bachmann et al., 2018). Fine 

scale applications have been made related to, e.g., industrial activities (Lachaise et al., 

2020), mining production (Figure 15), forestation/deforestation (Schweisshelm and 

Lachaise, 2021), etc. In combining with the old SRTM DEM, the TanDEM-X products 

and can also support inter-decadal terrain change analysis, for example biomass 

estimation (Solberg et al., 2018). In Hong Kong, considering the intensive vegetation 

coverage on most of its natural terrains, the long wavelength L-band SAR data is more 

suitable for DEM change detection from InSAR. In particular, the newly launched L-

band LUTAN-1 satellite by China will provide continuous data for future studies in the 

Guangdong-Hong Kong-Macao Greater Bay Area. 

 

 

 

Figure 14. Detected acquisition areas for the TanDEM-X Change DEM acquisition phase 

(from 2017-09-21 until mid-2020), with acquisitions parameters in the table (cited from 

Bachmann et al., 2018). 



 

Figure 15. DEM difference reveals terrain changes in a mine structure (cited from 

Schweisshelm and Lachaise, 2021). 

 

4. A review of land cover land use product in Hong Kong 

The LUM has undergone four major generations. The differences in the four 

generations mainly consist in three aspects including the data sources used, 

methodologies used for classification and change detection, and the land use 

classification system.  

From 1993 to 2001, the land utilization map (LUM) and Land Utilization Table (LUT) 

is basically produced manually by making use of secondary data gathered from various 

government departments and by conducting field survey for places where no secondary 

data are available (CUHK, 2001).  

Starting from 2001, the land utilization plan designed by the CUHK in 2001 (hereafter 

CUHK 2001) was used for generation of LUM and LUT (Planning Department Hong 

Kong, 2001). They incorporate the satellite images and take advantage of digital image 

analysis for automatic image classification. An integration of both remote sensing images 

and other sources of information (e.g., GIS data) is used considering that the remote 



sensing images has limitations on land use classification in urban area that are defined 

according to human activities. They divide the entire territory of Hong Kong into three 

different regions with adoption of different methods. Specifically, it uses the existing land 

use plans with digital image analysis for “unused land” on the areas of Hong Kong, 

Kowloon and Tsuen Wan Metro (CUHK, 2001). It updates the existing land use plans 

based on change detection method of principal component analysis with satellite data (i.e., 

Landat-7 in 2000 and SPOT-2 HRV2 image in 1997) for the New Towns area. As for the 

rural New Territories, it adopted maximum likelihood classification (MLC) for digital 

image classification about specific land cover classes with Landsat-7 ETM image 

(CUHK, 2001).  

The CUHK, 2001 was improved by CUHK, 2007. The MLC classification technique 

used in CUHK 2001 is subject to normal distribution for the training data set and it did 

not consider texture features. They improve the MLC based on logistic regression where 

the dependent variables are not required to be normally distributed, and it integrate the 

traditional spectral, texture and topographical parameters for LULC classification. The 

spectral parameters include bands 1-4 and the derive NDVI from SPOT 5 imagery. The 

texture parameters derive from multispectral images was revealed to be a very valuable 

source of spatial information and an important clue for land cover classification. It 

includes contrast, correlation, uniformity, and homogeneity. Topological indicator was 

represented by digital elevation model (CUHK, 2007). 

In 2003, sustainable operation of future landuse updating applications within the LUM 

and LUT for the Pearl River Delta (PRD) Region was carried out by the Planning 

Department aiming to update the Territorial Development Strategy (TDS) entitled “Hong 

Kong 2030: Planning Vision and Strategy” (BUHK, 2003). It integrates various sources 

of information, including both remote sensing images and GIS data, with the primary 

data source of Landsat ETM images. To maximize the usage of available data and to 

minimize the demand on resource and time, it integrates image auto-classification, visual 

interpretation and GIS processing together with the image classification being the core of 

data processing (BUHK, 2003). 

However, the abovementioned methodologies for producing LUM HK and LUM PRD 

by the Planning Department are mainly pixel-based, which have two limitations, Firstly, 



it cannot resolve the high spectral variation within the same land cover, and the spectral 

confusion among different land covers. Secondly, classification using only pixel-based 

spectral features result in a large number of “salt and pepper” outputs and the inherent 

spatial information is underestimated. Considering the defects in the previous LUM 

products, PolyU group commissioned by the Hong Kong Planning Department in 2013 

(hereafter PolyU 2013) to produce LUM for Hong Kong and PRD incorporates an 

additional Multi-scale Object Oriented Segmentation with decision tree Classification 

(MOOSC) (Nichol and Wong, 2008) method, which is a complementary classification 

method based on parcels instead of pixels (PolyU, 2013). It creates regional patches that 

represent one class within a patch and can give a better description and classification of 

rural vegetation since it groups the pixel in segments and minimizes the internal variance 

within classes. Thus, the variability of pixels within a class can be reduced. It can 

significantly reduce the “salt and pepper” pixel problem from pixel-based classifiers. In 

order to increase the band dimensionality, more band channels including the original 

multispectral bands, Normalized Difference Vegetation Index, Soil-Adjusted Vegetation 

Index (SAVI), Modified Soil-adjusted Vegetation Index (MSAVI), ChlorophyII index, a 

DEM raster band and three texture bands were input to the classifiers (PolyU, 2013). The 

SPOT-5, SPOT-6 and WorldView2 images are employed for the land cover classification, 

among which the WorldView2 images were particularly used for discrete heterogeneous 

land covers. The Landsat-8 satellite images were used for the entire PRD region. 

As a critical part in LUM generation, the categorization of land use or land use 

classification systems in the four generations of LUM have minor discrepancies, which is 

revised continuously mainly due to the updated users’ demanding, sources of land use 

information gathered, spatial and spectral resolution of remote sensing images, scales of 

land use plan, as well as the compatibility with land use information derived at different 

scales and required by different agencies (CUHK, 2001, 2003; BUHK, 2003; PolyU, 

2013). 

It is recommended that a comprehensive review on the Land Utilization Plan and Land 

Usage Table should be undertaken every five years considering the accumulated error 

propagation, updated users demanding, and the availability of new satellite images of 

improved resolution as well as advancements in image processing and GIS technique. 



 

5. Remote sensing imageries used for change detection 

The change detection was facilitated by the employment of medium-resolution, high-

resolution or very-high-resolution images. One study used MODIS product data (i.e., 

MCD12Q1v006 dataset) that provides global land use and land cover maps every year at 

500m spatial resolution to detect LULC change over the Greater Bay Area (GBA) 

including Hong Kong between 2001 and 2019 (Wang et al., 2021), which covers a large 

area and long time period with a relatively coarse spatial resolution. To achieve a better 

detection resolution, Landsat Thematic Mapper (TM) images were widely used (Wang & 

Li, 2011; Wong et al., 2017). Also, atmospherically corrected Landsat images with 30 m 

spatial resolution, including Landsat 5 TM, 7 ETM+, and 8 OLI level 2, were collected 

for the study in Hong Kong (Hasan et al., 2019; Hasan et al., 2020). As a special dataset, 

nighttime light time series (NLT) data were acquired for detecting GBA LULC changes, 

which has a relatively coarse spatial resolution at 1 km obtained from the Defense 

Meteorological Satellite Program (DMSP) with the Operational Linescan System (OLS) 

version 4 (Hasan et al., 2019; Hasan et al., 2020). As a combination of optical images 

from Landsat ETM+ (30m) and Synthetic-aperture radar (SAR) images from ENVISAT 

ASAR (75m), they were used for Guangzhou, SPOT-5 (10m) and ENVISAT ASAR 

(10m) were used for Shenzhen, and SPOT-5 (10m) and TerraSAR-X (3m) were used for 

Hong Kong to extract impervious surfaces effectively (Zhang et al., 2014). Furthermore, 

as Hong Kong has one of the highest density of urban areas across the globe, detecting 

minor LULC changes becomes essential to utilizing precious land and space effectively, 

which requires remote sensing images having very high-resolution that can be acquired 

from advanced satellites, such as WorldView-3 with spatial resolution finer than 1m 

(DigitalGlobe, 2021).  

Overall, satellite data normally have different spatial and spectral resolutions. The 

selection of the satellite images should consider not only the image spatial resolution, but 

also the spectral bands that should encompass at least blue, green, red and near-infrared 

bands. Basically, the satellite images can be grouped into two categories. The first group 

is very high spatial (VHS) resolution data, such as the images captured by IKONOS, 

QuickBird, WorldView, FLOCK, SPOT and GF satellites. Such VHS images are only 



available for commercial use in Hong Kong and they resemble aerial photos and are 

particularly good for visual interpretation. The second group is high spatial resolution 

images with spatial resolution ranging from 10 to 30m. The satellites of Landsat, 

Sentinel, and HJ-2 are representatives. The third group is medium spatial resolution 

satellites, e.g., Terra and Aqua with MODIS sensors, SNPP and NOAA-20 with VIIRS 

sensors, and Sentinel-3 with OLCI sensors. Table 1 illustrates major characteristics of 

satellite data relevant to the LUM production. 

 

 

 

 

 

 



 

Table 1. Major characteristics of satellite data 

Type Satellite  

(Sensor) 

Waves 

(nm) 

Spatial  

res. (m) 

Temporal res. Passing 

time 

Lifetime Application 

Very high 

spatial 

resolution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IKONOS  

(OSA) 

PAN 

490  

565 

680 

810 

0.82 

3.30 

Global coverage in 6 

months in daylight 

SSO 

10:30 desc 

1999 - 2015 Biomass, fraction of 

absorbed PAR, fraction of 

vegetated land, land cover, 

leaf area index, normalized 

difference vegetation 

index, vegetation type 

QuickBird 

(BGIS-2000) 

PAN 

485 

560 

660 

830 

0.60 

2.40 

Global coverage in 6 

months in daylight 

SSO 

10.30 desc 

2001 - 2015 Biomass, fraction of 

absorbed PAR, fraction of 

vegetated land, land cover, 

leaf area index, normalized 

difference vegetation 

index, vegetation type 

WorldView-1 

(WV60)  

PAN 0.50 Global coverage in 6 

months in daylight 

SSO 

13:30 desc 

2007 - 2022 Fire fractional cover 

WorldView-2 

WorldView-3 

(WV110) 

PAN 

425 

480 

545 

605 

660 

0.46  

1.84 

Global coverage in 6 

months in daylight 

SSO 

10.30 desc 

2009 - 2022 

2014 - 2022 

Biomass, fraction of 

absorbed PAR, fraction of 

vegetated land, land cover, 

leaf area index, normalized 

difference vegetation 

index, vegetation type 



 

 

 

 

 

 

 

 

 

725 

832 

950 

WorldView-4 

(SpaceView-

110) 

PAN 

480 

545 

672 

850 

0.31 

1.24 

Global coverage in 6 

months in daylight 

SSO 

10:30 desc 

2016 - 2019 Biomass, fraction of 

absorbed PAR, fraction of 

vegetated land, land cover, 

leaf area index, normalized 

difference vegetation 

index, vegetation type 

FLOCK 485 

545 

630 

820 

3.7 The full constellation 

of satellites provides 

daily coverage. 3.5 

months for a single 

satellite. 

SSO 

10:30 desc 

2014 - 2040 Fire fractional cover, 

Fraction of vegetated land, 

land cover, normalized 

difference vegetation 

index, soil type, vegetation 

type 

 

SPOT-6 

SPOT-7 

(NAOMI) 

PAN 

485 

565 

655 

825 

2 

8 

Global coverage in 1 

months. Minimum 

revisit time for a 

specific area: 3 days 

SSO 

10:30 desc 

2012 - 2022 

2014 - 2024 

Biomass, fraction of 

absorbed PAR, fraction of 

vegetated land, land cover, 

leaf area index, normalized 

difference vegetation 

index, vegetation type 

GF-1  

GF-6  

PAN 

485 

2 

8 

Global in 1 month SSO 

10:30 desc 

2013 – 2022 

2018 - 2026 

Biomass, fraction of 

absorbed PAR, fraction of 



(PMS) 555 

660 

830 

vegetated land, land cover, 

leaf area index, normalized 

difference vegetation 

index, vegetation type 

GF-2 

GF-7 

GF-8 

GF-9 

GF-10 

GF-11 

GF-14 

(PMS-2) 

PAN 

485 

555 

660 

830 

0.75 

3 

Global in 2 months for 

single satellite. For full 

Jilin-1 constellation of 

138 satellites this 

achieves images every 

10 mins. 

SSO 

10:30 desc 

2014 - 2022 

2019 - 2027 

2015 - 2023 

2015 - 2023 

2019 - 2027 

2018 - 2027 

2020 - 2028 

Biomass, fraction of 

absorbed PAR, fraction of 

vegetated land, land cover, 

leaf area index, normalized 

difference vegetation 

index, vegetation type 

High spatial 

resolution  

 

Landsat-7 

(ETM+) 

PAN 

480 

560 

660 

830 

1650 

2200 nm 

11.45 µm 

15 

30 

 

 

 

 

 

60 

Global coverage in 16 

days, in daylight. 

SSO 

10:00 desc 

 

1999 - 2022 Biomass, fraction of 

absorbed PAR, fraction of 

vegetated land, land cover, 

leaf area index, normalized 

difference vegetation 

index, vegetation type 

Sentinel-2A 

Sentinel-2B 

Sentinel-2C 

Sentinel-2D 

443, 490, 

560, 665, 

705, 783, 

842, 865, 

60, 10, 10, 

10, 20, 20, 

20, 10, 20, 

60, 60, 20, 

Global coverage in 10 

days, in daylight 

SSO 

10:30 desc 

2015 - 2022 

2017 - 2024 

2024 - 2031 

2025 - 2032 

Biomass, fraction of 

absorbed PAR, fraction of 

vegetated land, land cover, 

leaf area index, normalized 



(MSI) 945, 

1375, 

1610, 

2190 

20  difference vegetation 

index, vegetation type 

HJ-2A 

HJ-2B 

 (WVC-2) 

470 

560 

660 

830 

16  

Global coverage in 4 

days 

 

SSO 

10:30 desc 

2020 - 2025 

2020 - 2025 

Biomass, fraction of 

absorbed PAR, fraction of 

vegetated land, land cover, 

leaf area index, normalized 

difference vegetation 

index, vegetation type 

Medium 

spatial 

resolution 

Terra 

Aqua 

(MODIS) 

645, 858, 

469, 555, 

1240, 

1640, 

2130, 

412, 443, 

488, 531, 

551, 667, 

678, 748, 

870, 905, 

936, 940, 

1375 and 

the other 

16 

250 (band 

1-2) 

500 (band 

3-7) 

1000 for 

the other 

bands 

 

Global coverage nearly 

twice/day (long-wave 

channels) or once/day 

(short-wave channels) 

SSO 

10:30 desc 

13:30 asc 

 

1999 - 2023 

2022 - 2025 

Ocean colour, vegetation, 

aerosol, cloud properties, 

Earth surface albedo, oil 

spill cover, land cover 



infrared 

bands 

SNPP  

NOAA-20 

(VIIRS) 

412, 445, 

488, 555, 

672, 746, 

865, 

1240, 

1378, 

1610, 

2250 nm, 

3.70, 

8.55, 

10.763, 

12.013 

µm 

700, 640, 

865, 1610 

nm, 3.74, 

11.45 µm 

750 (band 

1-16) 

375 (band 

17-22) 

Global coverage 

twice/day (IR and 

day/night VIS/NIR 

channel) or once/day 

(VIS) 

SSO 

13:25 asc 

2011 - 2014 

2017 - 2027 

Ocean colour, vegetation, 

aerosol, cloud properties, 

Earth surface albedo, oil 

spill cover, land cover 

Sentinel-3A 

Sentinel-3B 

Sentinel-3C 

Sentinel-3D 

 (OLCI) 

400, 

412.5, 

442.5, 

490, 

510, 560, 

300  Global coverage in 2 

days, in daylight 

SSO 

10:00 desc 

2016 - 2035  

2018 - 2025 

2024 - 2031 

2028 - 2035 

Ocean colour, vegetation, 

aerosol, cloud properties, 

Earth surface albedo, oil 

spil cover, 

photosynthetically active 



620, 

665, 

673.75, 

681.25, 

708.25, 

753.75, 

761.25, 

764.375, 

767.5, 

778.75, 

865, 885, 

900, 940, 

1020 

radiation 

GF-4  

(GF-4 

imager) 

PAN 

MWIR 

50 

400 

Local coverage over 

China at minute-level 

GEO 2015 - 2023 Fire fractional cover 

Fire radiative power 

Fire temperature 

Land surface temperature 

Sea surface temperature 

SAR Sentinel-1A 

Sentinel-1B 

Sentinel-1C 

Sentinel-1D 

(SAR) 

C-band 

SAR 

Stripmap 

4*5 m2 

ScanSAR -

Interferom

etric 5*20 

m2 

Global coverage in 5 

days for the ‘Extra-

wide swath’ mode 

(duty cycle 70 %); in 

longer periods for other 

operation modes (duty 

SSO 

06:00 desc 

2014 – 2022 

2017 – 2024 

2024 – 2031 

2025 – 2032 

 

Glacier cover, Glacier 

motion, Glacier topology, 

ice sheet topography, land 

surface topography, sea-ice 

cover, sea-ice type 



ScanSAR -

Extra-wide 

swath 

25*80 m2 

Wave 

(WV) 

20*5 m2 

cycle 30 %), up to 3 

months 

GF-3 

GF-12 

(SAR-C) 

C-band 

SAR with 

12 

operating 

mode 

1 Global in one week in 

the large-swath mode 

SSO 

06:00 desc 

2016 – 2024 

2019 - 2027 

Glacier cover, Glacier 

motion, Glacier topology, 

ice sheet topography, land 

surface topography, sea-ice 

cover, sea-ice type 

TerraSAR-X 

TanDEM-X 

(SAR-X) 

X-band 1 to 16 m 

depending 

on 

operation 

mode 

Minimum revisit time 

of 2.5 days for a 

selected location 

SSO 

06:00 desc 

2007 – 2024 

2010 - 2026 

Fraction of vegetated land, 

glacier motion, glacier 

topology, land cover, land 

surface topology, soil 

moisture at surface, soil 

type, vegetation type 

ENVISAT 

(ASAR) 

C-band 30 to 1000 

m 

depending 

on 

operation 

mode 

Global coverage in 5 

day for the ‘global 

monitoring’ mode 

SSO 

06:00 desc 

2002-2012 glacier motion, glacier 

topology, land cover, land 

surface topology, soil 

moisture at surface, sea-ice 

cover, sea-ice type 



 



6. Thematic accuracy assessment 

Accuracy assessment is required to provide users on the confidence level that this 

map can be used as errors may occur during the LUM compilation process, which 

includes i) cartographic generalization of the LUM, ii) misclassification in remote 

sensing classification and iii) change detection from the previous map. Accuracy 

assessment is thus a necessary step in LUM generalization. It is performed by selecting 

sample pixels and checking with the reference information to determine overall accuracy 

of the LUM map as well as individual land use categories. The reference information is 

normally the sample points that can be collected from existing LUM or identified 

manually through ground survey, interpretation of aerial photos, very high-resolution 

images. Such sample points should be randomly selected before data processing tasks 

performed to avoid bias from human operator. The comprehensiveness of classes should 

be checked to ensure that the selected sample points will adequately cover all classes. It 

should be noted that part of the samples is used in the training processing of image 

classification procedure, while the remaining samples are used as the test samples for 

accuracy assessment.  

Various measures that used in the classification domain can normally be used in the 

change detection, which normally includes confusion matrix or error matrix, overall 

accuracies, kappa coefficient, as well as the producer’s and user’s accuracy of each class. 

A confusion matrix is generated by comparing a number of sample sites on the map 

to their equivalent locations in an appropriate source of higher accuracy. The columns in 

the matrix define the classes in the reference data, and the rows define the classes in the 

data being evaluated for accuracy. The diagonal elements of the matrix indicate correct 

classifications. The values in the cells in the table indicate how well the classified data 

agree with the reference data. With the samples pixels, it is possible to derive the overall 

accuracy, user’s accuracy (or commission error) and producer’s accuracy (omission 

error) of individual category from the error matrix.  

The overall accuracy is computed as a ratio of the number of correctly classified 

samples to the total number of samples, which is commonly used to assess the accuracy 

level of the entire classification. User’s accuracy of a particular land use category is 

computed as the ratio of the number of correctly classified samples in that category to the 



total number of samples belong to the same category from the classified map (the row 

total). It is a measure of the commission error for each category and represent the 

probability of a pixel classified on the map being the actual category on the ground. 

Producer’s accuracy of a particular land use category is computed as the ratio of the 

number of correctly classified samples in that category and the total number of samples 

being to the same category (the column total) from the reference information. This 

measure indicates the probability of a reference pixel being corrected classified. 

However, the overall accuracy can be misleading as an index as a certain number of 

correct classifications will occur by change, even in the most uncertain situations. The 

Kappa index with values ranging between 0 and 1 is expected under maximum 

uncertainty, which is computed as: 

𝑘̂ =
𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 − 𝑃𝑐ℎ𝑎𝑛𝑐𝑒

1 − 𝑃𝑐ℎ𝑎𝑛𝑐𝑒
 

where 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡  is the proportion of correctly classified entries and 𝑃𝑐ℎ𝑎𝑛𝑐𝑒  is the 

proportion of samples expected to be correctly classified by change formulated as: 

𝑃𝑐ℎ𝑎𝑛𝑐𝑒 =∑𝑃𝑟𝑜𝑤(𝑖)𝑃𝑐𝑜𝑙𝑢𝑚𝑛(𝑖)

𝑛

𝑖=1

 

where 𝑃𝑟𝑜𝑤(𝑖) is the proportion of total entries that are in row i, 𝑃𝑐𝑜𝑙𝑢𝑚𝑛(𝑖) is the 

proportion of all entries that are in column i, and n is the total number of rows or columns. 

 

7. Common software and programming language for change detection 

7.1. Common Software for change detection  

Various softwares are available for the data processing and analysis for LULC change 

detection. Table 2 lists the commonly used software that can be used for LULC change 

detection.  

Table 2. Common software for LULC change detection.  

Software name Description Symbol 

QGIS 

QGIS consists of a variety of user-

friendly opensource functions and 

plugins for LULC change detection, 

including RS image visualizing, editing,   



and analyzing, and composing printable 

maps.  

ENVI 

ENVI is a commonly used software 

for image processing and analyzing. 

Plenty of data types can be supported by 

it, such as multi- and hyper-spectral 

images, 3D LiDAR point cloud as well as 

SAR and FMV datasets. Expert-level 

results can be achieved by simple 

operations. In addition, it can work with 

much other software like ArcGIS.   

 

ERDAS 

IMAGINE 

ERDAS IMAGINE is another 

world’s leading software for RS. Simple 

scenes combined with powerful 

algorithms and data processing functions 

enable users to focus on analyses. 

Besides, multiple classification methods 

were incorporated into this software, 

including pixel-based and object-based 

classification, machine learning, and deep 

learning classification methods.   

 

Trimble 

eCognition 

eCogintion is designed to robustly,  

accurately, and rapidly extract 

information from any kind of geomspatial 

data by emulating the cognitive power of 

the human mind. The meaning from 

objects’ connotations and mutual 

relationships throughout various input 

data is distilled for depth analysis and 

interpretation.  

 



ESRI ArcGIS 

ArcGIS is an integrated geospatial 

software based on a GIS system for 

viewing, editing, managing, and 

analyzing geographic data. A family of 

client software is contained, including  

ArcMap, ArcCatalog, ArcToolbox, 

ArcScene, and ArcGlobe. ArcCatalog is 

for dataset browsing, previewing and 

metadata management. ArcMap is for 

editing and querying geospatial data and 

creating maps. ArcToolbox contains a 

large number of geoprocessing, data 

conversion and analysis tools. ArcScene 

and ArcGlobe allow users to view GIS 

data in 3D and conduct 3D analyst.  

 

Er Mapper  

Er Mapper is a professional software 

for RS and GIS data processing and 

exploitation. It can provide real-time 

responses, immediately processing and 

enhancing options for users.    

3DGIS 

3DGIS is designed to improve the 

effectiveness of data and information in 

cities based on geographic techniques.  

 

IDRISI 

IDRISI offers many GIS analysis tools to 

raster data and special graphical 

modeling environments. In addition, 

extremely flexible APIs allow users to 

achieve better processing and analysis.   

 



PCI Geomatics 

PCI Geomatics delivers a lot of solutions 

for more informed and faster decisions 

based on RS and GIS data and analysis.   

GRASS GIS 

GRASS GIS is a opensource software for 

powerful raster, vector, and geospatial 

processing engines. A temporal 

framework and a Python API are 

provided for rapid programming.  
 

SAGA GIS 

SAGA GIS is designed for easy and 

effective implementation of spatial 

algorithms. It delivers a fast-growing set 

of geoscientific methods.  
 

gvSIG 

gvSIG is a professional software for 

spatial data infrastructures, mobile 

solutions, and sectoral solutions. It 

includes a field app, 3D capabilities, and 

a desktop application.  

 

ILWIS 

ILWIS is a opensource GIS and RS 

software for digitizing, editing, and 

displaying of geographic data, as well as 

classification, enhancements, and spectral 

band manipulation of images. 

 

 

7.2. Programming Language for change detection 

Programming can help to process the data more effectively and efficiently, including 

RS images and geospatial datasets. Table 3 lists the commonly used programming 

language that can be used for LULC change detection.  

Table 3. Programming language for LULC change detection  



Programming 

language 
Description Symbol 

Python  

Python is a worldwide and flexible 

programming language for RS and GIS. 

A set of libraries and algorithms for 

image processing and geospatial data 

analysis are incorporated.  

 

R 

R is another worldwide and flexible 

programming language. Different from 

python, R provides more easy-used 

statistical methodologies.   
 

Matlab 

Matlab is good at metric processing, so 

it provides many algorithms for rapid 

image processing. It is one of the 

preferred languages for applied 

mathematics and engineering.  
 

IDL 

IDL is incorporated with ENVI 

software. It provides robust support for 

mathematical and statistical 

programming.  
 

 

8. Discussion and conclusion 

During the process of producing the land utilization map, the processing speed can be 

greatly improved when only the changes are represented rather than all the information of 

both images are exposed to the interpreter or human viewer (Singh, 1989). Therefore, 

change detection is of great importance which has been used in diverse applications, such 

as land use change analysis, monitoring of shifting cultivation, assessment of 

deforestation, change study in vegetation phenology, seasonal changes in pasture 

production, damage assessment, crop stress detection, disaster monitoring, snow-melt 



measurements, day/night analysis of thermal characteristics and other environmental 

changes (Singh, 1989). 

The overall workflow of change detection consist of data acquisition, data 

preprocessing, a change detection algorithm, and an accuracy evaluation (Asokan et al., 

2019). LULC change detection requires accurate geometric co-matching and atmospheric 

correction between images captured at different times. To achieve high-quality change 

detection, it is important to select proper images captured by various sensors, define 

suitable change classes, and employ adaptive methods. Methods employed should be 

dedicated to reduce the effect from the external factors of atmospheric conditions, 

moisture conditions, illumination and sensor calibration. Additionally, precise geometric 

registration of images is required which can be achieved by taking more accurate ground 

control points, or methods can be explored to bypass the requirement of the registration 

problem. Thus, appropriate selection of change detection techniques is crucial to obtain 

an accurate classification of the LULC changes. 

Some image processing methods, such as image differencing, image ratioing, which 

only deliver binary information, i.e., change versus no-change. If a study requires a 

detailed change matrix, more complicated techniques, such as post-classification, 

multitemporal-object change detection, and CNN, should be considered. An alternative 

method to determine a change detection can be relied on image analysis. Many standard 

pixel-based approaches are insufficient for processing high-resolution remote sensing 

images, while object-based method can be determined more effectively. There are a large 

number of algorithms essentially utilizing the pixel- and object-based approaches, which 

have been developed to be adapted into different scenarios. Each method has its own 

merits and demerits. The change detection methods normally are used jointly to handle 

the problem of real-word land utilization mapping as no single technique is sufficient for 

evaluating land use change information of all land types. The performance of various 

methods under different environments must be evaluated quantitatively to provide 

sufficient support for remote sensing specialists and resources managers to apply in an 

operational monitoring program. 

There is an increasing demand for developing new algorithms to provide reliable 

LULC change detection since new RS data are continuously generated from newly 



developed sensors. Despite the development of several change detection strategies, it 

remains challenging to choose a suitable method to achieve detection of study areas 

accurately, such as urban transformation, deforestation, desertification, and wetland 

change, etc. This study provides a relatively holistic review for land use land cover 

change detection algorithms, which is beneficial for the selection of appropriate change 

detection methods in future land utilization map generation. Thus, the authors suggest 

that comprehensive evaluation and analysis on all previously discussed components can 

help select an appropriate change detection method. Meanwhile, different change 

detection methods can be used for the same study area so that cross comparison can be 

implemented to determine result based on visual and/or quantitative accuracy assessment 

more reliable and accurate. New technologies are under research and developments, it is 

essential to keep track of these developments and adopt suitable ones for cost 

effectiveness and efficiency. 
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