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ABSTRACT

The behaviour of residential property prices in Hong Kong is so complex that 
the prediction of this strongly nonlinear time-series remains a difficult task 
for researchers. Traditional econometric models have been used frequently in 
modelling the time-series but the results obtained still leave room for improvement. 
In this study, moving away from traditional prediction methods, we use Radial 
Basis Function (RBF) to model and forecast short-term residential property price 
behaviour in Hong Kong. The performance of the RBF model was evaluated 
by a statistical approach. The result shows that the RBF is able to capture the 
nonlinearity embedded inside time-series. It successfully modelled the short-term 
price movement. 
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INTRODUCTION

Residential property prices in Hong 
K o n g h a v e e x h i b i t e d s t r o n g l y 
nonlinear behaviour in recent decades. 
The vola t i le and nonl inear pr ice 
fluctuation in the market means that 
all participants in it struggle to predict 
future price movements accurately, 
with the difficulty increasing because 
the underlying functional relationship 
between input and output is unknown. 
Furthermore, the actual input variables 
are hardly detectable. Hence, it is 
an inherently complicated task to 
determine the underlying nonlinear 
structure of the property price time 
series. 

A l though i t i s a d i f f i cu l t j ob to 
model property price time-series, an 
appreciable number of attempts have 
been made to model the input-output 
mapping of the property price series 
and to analyze the market. (Hendry 
1984, Drake 1993, Richard et al. 1996, 
Wilson et al. 2002, Edelstein et al. 
2007, Garcia et al. 2008, Miles 2008) 
These studies have not only provided a 
methodology with which to forecast the 
residential property market, but have 
also offered policy makers essential 
clues for determining appropriate 
government pol icy. A successful 
prediction of future price movement and 
volatility can also provide a direction in 
which commercial banks can develop 
better risk management for mortgages, 
as volatility is a key determinant of 
mortgage default probability (Foster et 
al. 1984). This would also be socially 
useful because the residential property 

market has long been one of the most 
vital markets in Hong Kong. Reliable 
modelling will be able to reduce the 
uncertainty borne by market participants 
so that the number of informed agents 
increases. Thus, a practical and reliable 
methodology for modelling the input-
output mapping of property price time-
series is necessary. 

In recent years, apart from traditional 
models, many researchers have made 
use of artificial neural networks (ANNs) 
as an alternative in modelling the input-
output mapping of time series. ANNs 
have the well-known ability to model 
the nonlinear behaviour of time series 
better than traditional econometric 
models. (Hill et al. 1996, Aminian et al. 
2006, Moshiri et al. 2006) In this paper, 
we make use of ANNs to forecast 
the short term residential property 
price movement in Hong Kong. By 
us ing macroeconomic and o ther 
related variables as input, we extract 
the underlying nonlinear functional 
relationship between inputs and output 
for the price series. 

T h e r e m a i n d e r o f t h i s p a p e r i s 
organised in four sec t ions : Data 
Collection; Methodology; Results; and 
Conclusions. 

DATA COLLECTION

The index we use for capturing the 
general residential property price 
movement in Hong Kong is from the 
Centa-City Index (CCI)1, provided by 
Centaline Property Agency Ltd. The 
CCI is a property value index based on 

1 Data was obtained from http://www.centadata.com/cci/notes_c.htm
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all the transaction records of the Land 
Registry. The estates included in the 
index are those with high transaction 
values and volumes that have been 
occupied for at least 12 months. The 
CCI is formulated as follows: 

1
-1

m
mm

m

MV
CCI CCI

MV
 (1)

where MVm   represents the total market 
value of the constituent estates for the 
month m. Hence, (1) can be written as:

m m-1
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MV MV

MV MV mmCCI CCI  (2)

We finally obtain equation (3) by 
repeating the above process where b 
is the base month (i.e. July 1997). The 
value of CCI at the base period is 100.

m

b

MV
CCI CCI

MV
 bm  
(3)

METHODOLOGY

Hence, the CCI measures the change 
in aggregate value of real estate in 
Hong Kong compared to that at the 
base period, which is similar to how the 
Hang Seng Index works in the Hong 
Kong stock market. The data we use 
for training the model is taken from 
January 1998 to June 2008. During this 
period, the CCI exhibits two distinct 
trends. From 1998 to mid-2003, there 
is a clear downtrend, with an uptrend 
running from mid-2003 to early 2008. 
The trends and price movements of the 
CCI vary over the period in a highly 
nonlinear manner, which is why we use 
a nonlinear forecasting method in this 
study. The monthly movement of the 
CCI is shown on Figure 1.	

Figure 1  Time series of the CCI from January 1998 to June 1998 (adopted 
from http://www.centadata.com/cci/notes_c.htm) 
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I n  a n a l y s i n g t h e  d y n a m i c s  o f 
property prices, econometric models 
are typically used. Hendry (1984) 
introduced an econometric model 
for existing UK residential property 
prices that used excess demand as 
a function of a range of parameters 
such as real income and lending rate 
in modelling the changes in house 
prices. Richard et al. (1996) extended 
Hendry’s excess demand function 
by giving it stochastic and dynamic 
properties. Drake (1993) employed 
the Johansen cointegration technique 
to derive a long-term equilibrium of 
UK house prices. Miles (2008) found 
that in forecasting housing prices, a 
generalized autoregressive model is 
superior to autoregressive moving 
average and generalized autoregressive 
conditional heteroscedastic models. 
Furthermore, Edelstein et al. (2007) 
introduced a two-equation system to 
model the residential property price 
cycle. The two equations are developed 
econometrically to set up the demand 
and supply sides of the residential 
property market. 

Although most residential property 
price modelling has used econometric 
models, Hill et al. (1996) found that 
ANNs are superior to traditional time 
series forecasting methods. Artificial 
neural networks have been successfully 
used in various areas, such as economic 
data (Aminian et al. 2006), financial 
price series (Moshiri et al . 2006, 
Pai et al. 2006, Blynski 2006), earth 
science and astronomy (Valdes, 2006), 
residential sub-markets (Garcia et 
al. 2008) and fire dynamical system 
(Lee et al. 2004). Hence, they can be 
viewed as powerful tools for use in 

modelling the input-output mapping 
of time series. With the presence of 
input and output data, ANNs are able 
to model the underlying function 
and structure from input to output by 
changing the weight between each 
neuron to minimise the error that 
arises. Another benefit of using ANNs 
is that they do not have to make any 
assumptions to form the model, which 
is not true of conventional econometric 
mode l s . In th i s s tudy, we adop t 
ANNs in forecasting the short-term 
residential property price. To model a 
property price time-series, time-lagged 
observations are usually used as inputs 
to ascertain the underlying function or 
structure of the input-output mapping. 
Wilson et al. (2002) proposed the use 
of a time-lagged property price as 
a single input to forecast the future 
residential property price. In our model 
we add other time-lagged observations 
as inputs to obtain a better result.

Development of network architecture
The network form we use here is the 
radial-basis function (RBF) model. 
Park et al. (1993) provided evidence 
that RBF is a universal funct ion 
approximator. Hornik (1991) also found 
that feed-forward neural networks with 
activation functions that are arbitrarily 
bounded and non-constant are universal 
function approximators. The activation 
function we adopted in the hidden 
neurons is a Gaussian function as 
shown in equation (4) where x is the 
input vector,  i and i are centre and 
spread of the ith  hidden neuron of the 
RBF. Linear functions as shown in 
equation (5) is adopted in the output 
layer of the RBF where w is the set 
of weights of the links connecting the 
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outputs of the hidden neurons to the 
output neuron.

 (4)

(5)

These satisfy the condition proposed 
by Hornik (1991) to ensure that our 
RBF model can be further verified as a 
universal function approximator.

Selection of parameters

Input parameters
One of the criteria for selecting suitable 
input parameters is their potential 
relationship to output. As stated above, 
the use of lagged prices in modelling 
residential property prices has been 
proven successful (Wilson et al. 2002). 
In addition, Hort (1998) found evidence 
that movement in income has a vital 
effect on the movement of real house 
prices in Sweden. This provides our 
rationale for using lagged nominal 
GDP as one of our input parameters. 
Edelstein et al. (2007) stated that 
macroeconomic variables, including 
the interest rate , crucial ly affect 
the residential property price cycle. 
Furthermore, at the sub-market level, 
Case et al. (1997) suggested that an 
increase in transaction volume tends to 
be tied to increases in property prices. 
With reference to the above pioneer 
works, we adopt four inputs to forecast 
the CCI: time-lagged CCI, nominal 
GDP, best lending rate2 and transaction 
volume, expressed as CCIm-1, GDPm-1, 
BLRm-1 and Volumem-1, respectively.

iiii xxx  

xwxf  

Output parameters
The horizon we forecast is one month 
ahead of the present month. Moshiri 
(2000) sugges t ed tha t a r t i f i c i a l 
neural networks are superior to other 
econometric models because they can 
forecast an inflation time series over 
a one-month horizon. Hence, we also 
try to forecast the residential property 
price one-month ahead. As a result, the 
output we use for our network is the 
CCI in the month m.

The number of nodes in different 
layers
In the input layer, we employ four 
nodes. Each node represents each input 
variable mentioned above at a period of 
m-1. For the hidden layer, the amount 
of hidden neurons required is suggested 
by the fo l lowing formula (Ward 
Systems, 1996) where N represents the 
number of hidden neurons, Nin and Nout 
are, respectively, the numbers of inputs 
and outputs of the problem and Nsample is 
the total number of training samples.

  

2
in out

sample

N N
N N  (6)

In line with equation (6), we recruit 
10 hidden neurons into our network 
as an initial trial. We then examine 
the effect of varying the number of 
hidden neurons by ±5: that is, from 5 
to 15. The results of this variation are 
presented in Section 4. Finally, we have 
only one single desired output which is 
the CCI in month m. The architecture of 
the fully interconnected RBF network 
is shown in Figure 2.

2	 The best lending rate is the rate quoted and updated by the Hongkong and Shanghai Banking 
Corporation Limited
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Network training and performance 
evaluation
Throughout our data, from January 
1998 to June 2008, we have 125 
samples. These samples are divided 
into 3 groups of samples namely 
training samples, validation samples 
and test samples. The training errors, 
which are obtained from applying the 
RBF model to the training samples, are 
used to adjust the weights of the RBF 
models by Turboprop algorithm (Ward, 
1996). It utilizes an independent weight 
update size for each different weight, 
rather than the usual method of having 
a single learning rate and momentum 
that apply to all weights. Furthermore, 
the step sizes are adaptively adjusted 
as learning progresses. Turboprop is 
simpler to use than the other methods 
because it does not require setting of 
the learning rate and momentum. The 
validation error which is obtained 
by applying the adjusted model to 
the val idat ion samples is used to 

Figure 2  Architecture of the Radial Basis Function adopted in this study
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maintain the generality of the model 
to avoid over-fitting. For every epoch 
of network training, the intermediate 
ne twork t r a ined by the t r a in ing 
samples is applied to the validation 
samples to evaluate the prediction 
error (i.e. validation error). For early-
stop validation approach, the network 
training is stopped when the validation 
error reaches its minimum and starts 
to increase. The typical progresses of 
training and validation errors during 
the network training are illustrated 
in Figure 3. The test samples do not 
involve in network training. Upon the 
completion of network training, the 
trained network is applied to the test 
samples. The prediction errors reveal 
the performance of the trained RBF 
model.

For these collected total 125 samples, 
the ratio of the number of training 
samples , val idat ion samples and 
test samples is chosen to be 2:1:1. 
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Therefore, we randomly extract 62 
as training samples, 32 as validation 
samples and 31 as test samples. Of 
these three kinds of patterns, the 
training patterns are used to train the 
networks, and the validation patterns 
are employed as a stop-training medium 
if their average error does not decrease 
for 20,000 consecutive epochs. This 
procedure ensures that there is no over-
fitting of the problem because when 
training is stopped with reference to 
errors of a suitably smaller set it tends 
to reduce the possibility of over-fitting 
when compared to a large set. Finally, 
the test patterns are used for measuring 
the accuracy of the model. We use the 
correlation coefficient (r²) to evaluate 
the relationship between desired outputs 
and the actual outputs of the test set. 

The approach to model learning, based 
on back-propagation learning, is called 
Turboprop. (Ward Systems, 1996) This 

 

 

Iteration 
Epoch 

Minimum 
validation 
error 

Epoch for 
early-stop 

Training 
error 

Validation 
error 

Pre-determined no. 
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further improvement 
on validation error  

Figure 3   Early-stop validation for network training

approach changes the size of weight 
updates independently towards different 
links between neurons, instead of using 
a uniform learning rate for the entire set 
of weights. Hence, a training process 
that is faster than traditional approaches 
can be achieved. 

As the time series involves a random 
process, random extraction is carried 
out 30 times to ensure all patterns have 
equal probability of being selected as 
test patterns so that a more objective 
picture of the model’s performance can 
be obtained. (Lee et al. 2004a, 2004b, 
Aminian et al. 2006) After the randomly 
extracted data points are trained once 
according to our rule and the results 
are recorded, we start another random 
extraction process, and continue in this 
manner until all 30 extractions have 
been completed. Figure 4 is a flow chart 
of the neural network training.
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Figure 4  Methodology in network training and performance evaluation
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Figure 5   Typical results of the predicted CCIm by RBF and the CCIm of the 
actual data. The predicted results reasonably agree with the actual data.
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RESULTS

The model’s performance is measured 
by the correlation coefficient (r2) 
between the prediction and the data of 
the test set. It is defined in equation (5).

2

2
2 2

x x y y
r

x x y y
      (5)

Figure 5 shows the typical simulation 
result of the total 30 runs. It shows that 
the predicted results reasonably agree 

Statistical results 	 Values 
Mean of r2  	 0.959  
Standard deviation of r2  	 0.016  
Minimum value of r2  	 0.932  
Maximum value of r2  	 0.986

with the actual results with value of r2 
= 0.957.

Table 1 summarises the results of the 
model with 30 runs with randomly 
ext rac t ions of da ta for t ra in ing , 
val idat ion and test samples . The 
standard deviation of these 30 results 
is only 0.016, which reveals that the 
model is able to extract the underlying 
nonlinear functional relationship 
between input and output parameters to 
a very high extent. 

Figure 6 illustrates the probability 
distribution of the r2 value from the 
30 simulations. It is presented by 
beta distribution since the r2 value 
is bounded within the domain of 
[0, 1]. The figure indicates that the 
probability of r2 value being less than 
0.9 is practically zero. The distribution 
exhibits a vigorously upward sloping 
curve when r2 > 0.93, which indicates 
that the probability density of r2 is 
clustering for r2 > 0.93. This result 
confirms that the RBF provides a well-
performed and reliable modelling 
method in the prediction of residential 
property prices over a one-month 
horizon.

Table 1  Descriptive statistics of Correlation Coefficient (r2) on the results of 30 
runs

Apart from measuring and evaluating 
the capacity ANNs to predict price 
series, we have also investigated the 
effect of the number of hidden neurons 
on ANN performance. The results of 
employing ANN structures with 5 to 
15 hidden neurons in our 30 randomly 
timed extractions are given in Figure 7. 
As variation in the number of hidden 
neurons has an insignificant effect on 
the model’s performance, we finally 
adopt 10 hidden neurons as a rule of 
thumb and with reference to equation 
(6). A possible explanation for this 
minute difference is that the capacity to 
approximate a functional relationship 
may start in a particular dimensionality 
of hidden space. 
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CONCLUSIONS

The modelling and forecasting of 
residential property prices has long been 
a complicated process for researchers. 
Most previous studies used econometric 
models that attempted to generate the 
underlying function of the time series. 
However, few of those models can be 
used extensively and successfully. 

In this study we used ANN, which 
are well known for their capacity to 
model nonlinear time-series but rarely 
used in modelling and forecasting 
residential property price time-series. 
By using ANN, we modelled the short-
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term price behaviour of residential 
property from January 1998 to June 
2008. For the model, we recruited 
radial-basis function networks as our 
network architecture and used time-
lagged observations as input to forecast 
short-term price movement. Moreover, 
to obtain an objective picture of the 
model’s performance, we randomly 
extracted data points for training and 
testing 30 times so that each data point 
had an equal probability of being put 
into a test set. 

Our results reveal that the performance 
o f t h e m o d e l , m e a s u r e d b y t h e 
correlation coefficient, is so promising 

Figure 6  Probability distribution of the Correlation Coefficient. Beta 
distribution was adopted since the value of Correlation Coefficient is bounded 
between 0 and 1.
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that short-term residential property 
price behaviour in Hong Kong can 
be modelled very successfully. The 
standard deviation of the 30 values of 
the correlation coefficient is so minute 
that the reliability of the model is 
guaranteed. Furthermore, even if we 
vary the number of hidden neurons 
in the network architecture, there is 
no significant change in the model’s 
performance. 

Our s tudy prov ides an e ffec t ive 
methodology for modelling residential 
property price movement. Due to 
their very promising accuracy, ANNs 
could be used to model the underlying 
nonlinear function of property price 
behaviour in any region. 
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